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Abstract. The simplest wave equations are those whose general solutions comprise progress- 
ing waves. We construct a comparatively large, possibly exhaustive, family of self-adjoint 
acoustic equations in 1 + 1 dimensions that are simple in this sense. 

1. Introduction 

Partial differential equations with variable coefficients that are exactly solvable in some 
useful sense are an important exception to the general case. In this paper we shall 
restrict ourselves to equations in 1 + 1 dimensions of the special form 

c2(x, t )  w x x  = wrr (1.1) 

usually referred to as acoustic equations, and further restrict ourselves to examples of 
(1.1) that are self-adjoint. We shall construct a family of such equations all of whose 
members are exactly solvable in a sense to be made precise, solvable self-adjoint 
acoustic equations (SSAE), and which may include all such cases. 

We shall consider a linear wave equation to be exactly solvable when its general 
solution is a finite sum of progressing waves of finite order [ 1,2]. In 1 + 1 dimensions 
a progressing wave is a function that can be written in the form 

N d"S(z) w= c h , ( u , u ) -  
n = O  dz" 

where the h,(u ,  U )  are fixed functions of the characteristic coordinates U and U, and z 
is either U or U, with S any sufficiently differentiable function. Clearly an equation of 
the type (1.1) will be exactly solvable precisely when its general solution takes the form 

a trivial example is provided by 

w x ,  = Wll W =  a ( x -  t ) +  b(x+ t )  (1.4) 

It is apparent that any such equation is mathematically simple since its general 
solution can be written without recourse to infinite series or non-trivial integrals. It is 
physically simple in the sense that given any pair of characteristics U = uO, U = U,, or, 
alternatively, v = vO,  U = U , ,  there exists a solution determined by an arbitrary function 
of one variable, whose support is bounded by that pair of characteristics. This behaviour 
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has been called ‘characteristic propagation’ [ 31, and the corresponding solutions are 
variously referred to as ‘tailless’ [3], ‘non-spreading’ [4], or ‘wake-free’ [ 5 ] .  In general 
relativity such equations are associated with ‘transparent spacetimes’ [6], and in 
quantum mechanics with ‘reflectionless potentials’ [7]. These references indicate the 
variety of settings in which it has been found worthwhile to search for exactly solvable 
wave equations. Exactly solvable acoustic equations in 1 + 1 dimensions are the subject 
of a recent publication [8], and our construction of possibly all such equations among 
those that are self-adjoint significantly extends some of the results of that paper. It is 
worth noting that even a single example essentially different from (1.4) is not immedi- 
ately evident. 

A sufficient and probably necessary condition for any homogeneous linear second- 
order wave equation in 1 + 1 dimensions to be exactly solvable in our sense was given 
in 1968 by Kundt and Newman [3]. A feature of their approach is that it includes an 
explicit construction of the progressing wave general solution. Their criterion applies 
to the normal form 

[&jo(u,  - j l ( U ,  v)lrc10 = 0 (1.5) 
into which every such wave equation can always be transformed [3]. Equation (1.5) 
is explicitly self-adjoint when j o (u ,  v )  = 1. It is easy to see that transformations of the 
form ti = ti( U), B = B( v)  and i( U, U )  = k(  u ) $ ~ (  U, v) ,  preserve the normal form ( l s ) ,  
which means that 

j O ( %  U )  = m ( u ) l ( u )  (1.6) 
characterises the essentially self-adjoint equations. Thus our first goal is to isolate those 
functions c(x, t )  for which ( l . l ) ,  when transformed into the form (1.5), yields (1.6). 
The result is quite simple, as is the special class of j l ( u ,  U )  that can result. Although 
the calculation is elementary we have no reference for it, so the details are given in 
section 2. 

Once all the self-adjoint acoustic equations have been expressed in normal form 
one wishes to specialise the j l ( u ,  U )  further to those for which (1.5) is in fact exactly 
solvable. Fortunately, results obtained recently [9, 101 provide an explicit construction 
of all pairs jo (u,  U), j l ( u ,  U )  for which the Kundt-Newman criterion is satisfied, and 
an equally explicit construction of all the j , ( u ,  v )  for which that criterion is satisfied 
andjo(u,  U )  = 1 .  The reader is referred to [9 ,  101 for details; in section 3 we restate the 
results from [9] that we shall need here. 

In section 4 we specialise the results stated in section 3 to the particular class of 
j , ( u ,  U )  obtained in section 2. This specialisation is not trivial; however, a clean solution 
can be obtained providing a relatively large class of SSAE and their progressing wave 
general solutions. It seems to us likely that the family constructed includes all the 
SSAE, but that is not proved here. 

In section 5 we work out the details of a special case to illustrate our result, and 
relate it to results in [8]. We also discuss the possible extension of this work to the 
non-self-adjoint case. 

2. Self-adjoint acoustic equations 

If we apply the transformation 

U = U ( X ,  t )  U = U ( X ,  t )  
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to (1.1) we obtain 

2(c2u,u,-u,u,) w,,+(c2u,,-u,,)w,+(c2u,,-u,,)wv=0 (2.2) 
precisely when the transformation satisfies c2(x, t ) u :  = U:, c2(x, t )u :  = U:. It follows 
that c(x, t ) u ,  =*U, and c(x, t )u ,  = *U,, and in order that the Jacobian of (2.1) be 
different from zero we must choose opposite signs in these equations. Without loss of 
generality we choose 

c(x, t ) u ,  = -U, c(x, r)u,  =+U,. (2.3) 
However, taking the x and t derivatives of each of (2.3) and using the equality of 
mixed partial derivatives yields 

(2.4) 2 
c U,, = U,, = (c, - cc,)u, c2uxx - U,, = -( ct + cc,) U, 

so (2.2) becomes 

c, + cc, 
(2 .5)  B =  -- c, - cc, 

A..----- W,, + AW,, + BW, = 0 
4c2u, 4 2 u ,  . 

The normal form (1 .5 )  with $ = =(U, U )  W becomes 

precisely when the transformation function Z is any solution of (1.5). Equations (2.5) 
and (2.6) are identical when 

_.- - B  " + ( l n l j o 1 ) , = ~ .  z (2.7) 
2,  
z 

However, (1 .5)  is self-adjoint just when we can choose j, = 1,  in which case (2.7) 
becomes 

Z,/Z = B Z,/Z = A. (2.8) 
It is immediate that 

(In lZ), = Bu, + Au, = -(ln A), 
(In lZl), = Bu,+Au, = +(ln A), 

and from this it follows that 

(In IZI),, = -(In A),, = +On A),, (2.10) 
which implies that 

(In A),, = o 4x9 t )  = f ( t ) l g ( x >  (2.11) 
where f and g are arbitrary functions of one variable. 

If we start with (2.11) then from (2.9) we have 

(2.12) 

which imply, after differentiating with respect to t and x, respectively, and subtracting, 
that 

(2.13) (In ljd)otux =(In Ijol)uxc(x, t )v , .  
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Given (2.11) this gives 

and introducing 

2 u = f - i  2 v = R + i  (2.15) dR d i  
dt dx  - = f ( t )  -= g ( x )  

it is easy to integrate (2.14) to obtain j o =  l ( u ) m ( u ) ,  which means that our equation is 
self-adjoint. 

Thus we have our first result: 

Equation (1.1) is self-adjoint if and only if 
C2(& t )  = f ’ ( t ) / g 2 ( X ) .  (2.16) 

If we begin with ( l . l ) ,  assume (2.11), and do the transformation (2.15) we obtain our 
second result: 

The normal form of ( 1 . 1 )  with c(x, t) = f ( t ) /g (x)  is 

{ a 2 , u - [ J l ( ~ ) - - j l ( 1 ) 1 1 ~ o = O  

where 

(2.17) 

(2.18) 

Note that the lower case jo (u ,  U), j l ( u ,  v )  refer to the general normal form ( l S ) ,  while 
the alternative normal form (2.17), which exists precisely in the self-adjoint, that is 
factorised velocity, case, is expr$ssed in terms of the single-variable upper case Jl (R>,  
Y, ( 0, with j l (  U, U) = J ,  ( U + U )  - J, ( t- U). 

It remains to find those J1 and J,, and thus f and g, for which (2.17), and thus the 
self-adjoint specialisation of (1 .l), are exactly solvable. 

3. The j-sequence 

In this section we briefly review results from [3,9,10]. Given any equation in the form 
(1.5) we generate a sequence { j n ( u ,  U)}, -cc < n < +cc by 

If this sequence is ‘double-terminating’, that is if there exists N > 0, M < 0 such that 
j N t l  = 0 and l / j M - ,  = 0, it is shown in [3] that (1.5) is exactly solvable in the progressing 
wave sense and that the general solution is the sum of 
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It is clear that by carrying out the indicated differentiations in (3.2) one obtains 
examples of (1 .3) ,  including formulae for the g, andf, in terms ofj,, j,+, , . . . , j,-,, jN. 
It seems likely that only equations generating such double-terminating sequences are 
exactly solvable, however, we have no proof to that effect, and this is one of several 
reasons why we cannot be sure we shall ultimately obtain all cases of SSAE. 

The condition that jo(u, U )  and j l ( u ,  U )  generate a doubly-terminating j-sequence 
amounts to a nonlinear partial differential equation in two variables of order 2( N + IMI). 
In [lo] it was pointed out that this nonlinear problem, which is easily translated into 
a set of N+IMI coupled nonlinear partial differential equations in two variables, is 
exactly the same as the dynamical system known as the finite two-dimensional Toda 
lattice with free ends [ 113 .  Fortunately, the non-trivial general solution for this problem 
is known [12] and was used in [lo] to give a general solution to the condition for 
double termination of the j-sequences. As we are concerned with self-adjoint equations 
we need the specialisation of that general result to cases where jo(u,  U )  = 1 .  This 
non-trivial specialisation was given in [9] and we restate it here. We note first that 
substituting jo= 1 into (3 .1)  implies 

j,j-, = 1 V n  (3.3) 
so it is sufficient to find j , ,  j2, . . . , j,. We define 

where p l ,  . . . , pN are arbitrary functions of U, 
U, and 

. . . , GN are arbitrary functions of 

n 
7 

I ( u )  = I" 91 I 502 * ' j 502 I 501 

n = 0 ,  . . . ,  2N, 
n 

(3.5) 

In (3.5) if n is even each function appears twice in the integrand, while if n is odd 
(2k-t- l ) ,  (Pk(  $ k )  appears just once, and in the middle spot. We also define a differential 
operator A, on functions of U and U by 

Then a doubly-terminating sequence of j compatible with j, = 1 and j-,j, = 1 and of 
total length 2 N  + 1 is given by 

A N  -,%NIA N-n+ 1 X N  l s n s N  (3.7) j, = ( - I ) ~ - "  

and (3.3). The number of arbitrary functions in the specification of x, by (3.4) is 
such that (3.7) gives a general solution to the problem, however, as we are dealing 
with a nonlinear system it is not ensured that (3.7) gives all solutions. This is a second 
reason why we may not be obtaining all the SSAE with this derivation. 
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4. The solvable equations 

We wish to find choices of .TI(%) and ? , ( I )  for which (2.17) is exactly solvable. We 
first note that if (2.17) is exactly solvable with j , (  I )  = 0 then the corresponding j, and 
so f, and g, depend exclusively on 2, and similarly for J,(f) = 0 and t: We now show 
[ 131 that: 

If 

solves 

while 

(4 .3)  

solves 

then 
N '  N 

'P= 1 b , . a , ( d , ) " + " ' F ( t i x )  
n'=O n = O  

(4.5) 

solves 

'Ptt  - 'Pxx + [ G ( x )  + V (  t ) ] ' P  = 0. (4.6) 
The argument is straightforward. If we substitute (4.5) into (4.6), and use the fact that 
for each n' (4.1) with p = (8 , ) " 'F  solves (4.2), and similarly that for each n (4.3) with 
q = (a,)"F solves (4.4), we get 

N '  N 

*tr-'J'xx+(G+ V ) q =  1 2[ara,)(arb,,)-(axan)(axbn,)l(d,)nt"'F. (4.7) 
n'=O n = O  

But as noted aran = axb,, = 0, so each term on the right-hand side of (4.7) vanishes and 
(4.5) is a (progressing wave) solution of (4.6). This result reduces the problem to a 
search for double-terminatingj-sequences depending on either o f f  = v + U or I =  U - U, 
but not both. However, a large class of such solutions is readily available. It is sufficient 
that we choose q I , .  . . , c p N  and . . . , +N in (3.5) so that the X N  depend on just one 
of the v + U or v - U, respectively. The first solution follows if we take 

Q, = c,  eKiiu $,, = d ,  e K n r .  (4.8) 
where the c, ,  dn and K ,  are constants, and in integrating the exponentials in (3.5) we 
'choose the constants of integration to vanish'; the second solution is similarly achieved, 
with 

+, = a, e'tzu, (4.9) 9, = E, 

It is not obvious that this is the only way in which to achieve our goal of making X, 
depend on just o + U or just U - U ;  in fact it definitely misses one set of examples which 
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we shall give explicitly below. This is the third reason why we may not be constructing 
all the SSAE. The missed case is, however, quite special and with its explicit inclusion 
(4.8) and (4.9) may provide a complete solution to this stage of the construction. 

Let us summarise the construction of the SSAE. (i)  Substitute (4.8) and (4.9) into 
(3.5) to obtain, via (3.4), X N ( v + u ) ,  g N ( u - u ) .  (ii) Substitute X N ,  gN into (3.6) and 
(3.7) to obtain j - N ( 2 ) ,  .;. ,j5(2), j -N , ( r ) , .  . . jN , (F) .  (iii) Substitute these j into (3.2) 
to obtain (LR and $+,, $R, and from these g, (2 ) ,  f , ( r ) ,  of (1.3). (iv) use these 
tunctions in (4.5) to obtain the progressing wave general solutions of (2.17), with J,(B), 
J l ( f )  known from step (ii). (iv) Use (2.18) to find g ( 2 ) ,  f(r), and then (2.15) to find 
f ( t ) ,  T(x), and thus g[2(x)], f[I(t)], so that you know which examples of (1.1) you 
have solved exactly. 

Fortunately, the literature provides some nicely structured families of examples of 
J1(  2) [ j , (  r)], found independently of this involved construction, which generate doubly- 
terminating j-sequences. it is shown in [ 141 that if 

j , ( V  - U )  = j l ( r )  =7 '('+ ''1 (4.10) 
t 

1(1+ 1) 
2* 

j1( v + U )  = Jl(.f) = - 

then we have a j-sequence of total length 21 + 1, 
a double termination for 

1(1+1) 
b' cosh'(R/b) 

j , (  V + U )  = J ,  (2) = - 

1 ( 1 +  1) 
d 2  cosh'(f/d)] 

j l ( V  - U )  = jl( i) = - 

with j o  = 1. Similarly we must obtain 

(4.1 1) 
1 

since this ostensibly different set of j , (  v + U )  [ j , (  U - U ) ]  follows directly from (4.10) 
by applying the coordinate transformation 

V '  U' 

b 
v = coth - 

b u = tanh - (4.12) 

to (4.10), and dropping the primes. A more complicated and inequivalent set of j ,  
resulting in doubly-terminating j-sequences is 

I t (  l'+ 1) l ( l + l )  
Jl(2) = 

b' sinh2(2/ b )  - b2 cosh2(2/ b )  
l ' ( l !+  1) 

jl( I) = [ b2 sinh2( f/ b )  - d 2  

(4.13) 

Other, similar, examples are given in [14]. The examples given by (4.10) are obviously 
not obtainable via (4.8) or (4.9), while the others are [15]. 

5. A concluding example 

Let us assume that Jl(2) is given by (4.10). It is known [14] that in that case (2.17) 
with TI( r) = 0 is solved by 

( l + m ) !  I I - m  I 

+= m = 0 R m  1 "("> dv a ( v ) + x $ ( : ) f - m b ( u )  CIm = (-l)m m !  (Z - m)! (5.1) 
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which allows us to read off the g,(X) and f , (R) .  Thus we have jumped into the 
construction summarised above at step (iii). Corresponding results for Jl(R) = 0 and 
jl(f) given by (4.10) can be obtained by U +  -U. It follows from (2.18), Jl(R)= 
( g1’2)zf/ g l ” ,  that 

(5.2) g’/‘(X) = & + l +  p p  

where a and p are arbitrary constants. 

(2.1 5) that 
If we first consider separately the cases a = 1 ,  0 and a = 0, p = 1 we obtain from 

(5 .3)  x = - 1 / . p + ’  = R2‘+ l  

respectively, where (5.3) has been simplified by the freedom of a linear transformation 
on x. Inverting (5.3) and substituting back into (the appropriate specialisations of) 
(5.2) yields 

(5.4) 

c(x) = ( a x +  b)2‘”2’+1) ( 5 . 5 )  

c ( t )  = ( & + g ) - 2 ‘ / ‘ 2 ’ + 1 ’  (5 .6 )  

g[qx)] = . p + 2 ) / ( 2 1 + 1 )  

c(x) = ( a x +  b) (2 ’+2) / (2 ’+1)  

c ( t )  = (& + g ) - ( 2 ’ + 2 ) / ( 2 ’ + 1 )  

g[f(x)] = f21/(2‘+1)  

respectively. Using the freedom of linear transformations again we obtain 

as examples of velocity functions for which ( 1 . 1 )  is exactly solvable. The particular 
cases corresponding to 1=0 and 1=1  are among a few examples of such velocity 
functions found in [8]; clearly (5.5) and (5.6) are a significant generalisation of those 
results. Another major generalisation follows from applying (4.1) through (4.6) to 
conclude that c(x, t )  = cl(x)c2(t), with cl(x) either of (5.5) and c2(t) either of (5 .6 ) ,  
also yields an exactly solvable acoustic equation. Finally, a class of examples combining 
the above arises from the linear combination (5.2). In this case (2.15) can be integrated 
to obtain 

x =  l/(aR2’+’+p). (5 .7)  
Inverting (5.7) and substituting back into (5.2) yields 

which yields 
21/ (2 l+  1 ) 

C(X)=(ax+b)2 ( 1 -  :::3 
(5 .9 )  

along with their product, as velocity functions consistent with exact solvability. 
More generally, can we expect all of the integrals that arise in steps (4) and (5)  in 

the above summary to be evaluable in a nice form? In calculating (g”’))(f) from (2.18) 
the answer is positive since we are using J l ( f )  for which (2.18) is ‘exactly solvable’; 
the solution can be obtained as a linear combination of and (cIR of (3.2) with a ( v )  
and b ( u )  taken to be constants. However, the resulting g(R) are complicated, and it 
is not clear that (2.15) can be integrated and inverted to find a useful form for c(x), 
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in general. For example, from Jl(2) = 2/sinh2 2 we easily obtain that c(x, t )  = 
tanh[n(x)] results in an exactly solvable acoustic equation, but R(x) is the inverse of 
x = 2 -tanh 3. In situations like this the normal form (1.9,  or more specifically (2.17), 
is the ‘right’ normal form in which to study the problem. 

Let us conclude by considering the non-self-adjoint case, briefly. Since the Kundt- 
Newman criterion for double termination of the j-sequence has been solved in the 
general case in [lo] it would appear that progress in this case should be possible. 
Unfortunately, this is not necessarily so. The general acoustic equation is characterised 
by a single function c(x, t ) ,  while the normal form (1.5) contains two such functions. 
Thus, the general acoustic equation must transform to (1.5) with a restriction on the 
pair j o (u ,  U ) ,  j l ( u ,  U ) ;  at this time the form of this restriction is not known. To put it 
simply, we do not have the analogue of (2.17) for the general case, thus we do not 
have the class of normal forms, corresponding to ( l . l ) ,  to which to apply the results 
of [lo]. Efforts in this direction are continuing. 
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